MAT 534 FALL 2015 REVIEW FOR THE FINAL EXAM

GENERAL

The exam will be in class on Friday, December 11, 11:15am-1:45pm. It will consist of 8-9 problems and will be a closed book exam. In addition to the material covered in reviews for Midterms I and II, it will cover the following material.

Material Covered in class after November 12, 2015

- 1) Finite-dimensional vector space V over a field F, $\operatorname{Hom}_F(V, W)$, representation of $T \in \operatorname{Hom}_F(V, W)$ by a matrix, $\operatorname{End}_F(V)$.
- 2) Tensor product of vector spaces $V \otimes W$ (over a field F), dual vector space V^* , $\operatorname{Hom}_F(V,W) = V^* \otimes W$, $T^* \in \operatorname{Hom}_F(W^*,V^*)$, column rank=row rank theorem.
- 3) Determinants and their properties.
- 4) Eigenvalue and eigenvectors, eigenspaces. Equivalent criteria for $\lambda \in F$ to be an eigenvalue for $T \in \operatorname{End}_F(V)$. Linear independence of eigenvectors corresponding to different eigenvalues. Characteristic polynomial $c_T(x)$. Diagonalizable T.
- 5) A finite-dimensional F-vector space with $T \in \operatorname{End}_F(V)$ as a pure torsion F[x]-module. Minimal polynomial $m_T(x)$ of T.
- 6) Invariant factor decomposition of a torsion F[x]-module V:

$$V \cong F[x]/(a_1) \oplus \cdots \oplus F[x]/(a_m),$$

where $a_1(x)|a_2(x)|\dots|a_m(x)$ are invariant factors and $a_m(x) = m_T(x)$.

- 7) Companion matrix $C_{a(x)}$ for multiplication by $\bar{x} = x \mod a(x)$ in the monomial basis of F[x]/(a(x)). Existence and uniqueness of a rational canonical form of $T \in \operatorname{End}_F(V)$.
- 8) The following are equivalent: $S, T \in \text{End}_F(V)$ are similar; corresponding F[x]-modules are isomorphic; S and T have the same rational canonical form.
- 9) Characteristic polynomial $c_T(x)$ is the product of invariant factors, $c_T(T) = 0$ (Caley-Hamilton), and $c_T(x)$ divides some power of $m_T(x)$.
- 10) The Smith normal form of the matrix xI A by row and column operations over F[x], where A is the matrix of T in a basis e_1, \ldots, e_n of the vector space V. The algorithm in the

textbook (keeping track of the row operations) to establish the F[x]-module isomorphism

$$V \cong F[x]f_1 \oplus \cdots \oplus F[x]f_m, \quad F[x]f_i \simeq F[x]/(a_i(x)),$$

for finding the cyclic vectors $f_1, \ldots, f_m \in V$. Completing each f_i to a basis $f_i, Tf_i, \ldots, T^{\deg a_i-1}f_i$ of the *i*-th cyclic subspace $V_i = F[x]/(a_i(x))$. Expressing this basis of V in terms of the basis e_1, \ldots, e_n gives a matrix P such that $P^{-1}AP$ is in rational canonical form.

- 11) From rational canonical form to Jordan canonical form under the main assumption that all roots of $c_T(x)$ are in the field F. Use Chinese Remainder theorem to pass from invariant factor decomposition to the elementary divisor decomposition. Jordan block of the multiplication by $\bar{x} = x \mod (x \lambda)^k$ in the basis $(\bar{x} \lambda)^{k-1}, (\bar{x} \lambda)^{k-2}, \dots, \bar{x} \lambda, 1$ of $F[x]/(x \lambda)^k$. Obtaining Jordan canonical form.
- 12) Necessary and sufficient criterion for T to be diagonalizable over F: all roots of $c_T(x)$ are in F and $m_T(x)$ has only simple roots.
- 13) Passing from cyclic vectors $f_1, \ldots, f_m \in V$ to the basis of the Jordan canonical form: for each invariant factor

$$a(x) = a_j(x) = (x - \lambda_1)^{\alpha_1} \cdots (x - \lambda_k)^{\alpha_k}$$

and the cyclic vector $f = f_j$ consider the subspace V_{ij} of the cyclic space V_j consisting of vectors $v \in V_j$ such $(T - \lambda_i I)^{\alpha_i} v = 0$. It has the basis $(T - \lambda_i I)^{\alpha_i - 1} g_i, \ldots, (T - \lambda_i I) g_i, g_i$, where

$$g_i = \frac{a(T)}{(T - \lambda_i)^{\alpha_i}} f, \quad i = 1, \dots, k.$$

Doing this for j = 1, ..., m, and expressing the resulting basis of V in terms of the basis $e_1, ..., e_n$ of V gives matrix P such that $P^{-1}AP$ is in the Jordan canonical form (here A is the matrix of T in the basis $e_1, ..., e_n$).